Defining the "Smart" Energy Retrofit

Through a Feasibility Study of Two 1960s Residence Halls

2020 AIA/ACSA INTERSECTIONS RESEARCH CONFERENCE: CARBON

GOODYCLANCY

SCOPE EVALUATION

Introductions

Lori Ferriss, AIA, PE, LEED AP Director of Sustainability and **Climate Action**

Elaine Hoffman, AIA, CPHC, LEED AP Associate

Outline

- Context the case for "smart" energy retrofits
- Case study introduction
- Analysis findings
- Conclusions

INTRODUCTION

The Next Decade is Critical for Climate Action

4 | **GOODYCLANCY** | Defining the "Smart" Energy Retrofit Through a Feasibility Study of Two 1960s Residence Halls

© GOODY CLANCY DATA SOURCE: ARCHITECTURE 2030

A Deep Energy Retrofit...

 "...is a whole-building analysis and construction process that achieves much larger energy cost savings—sometimes more than 50% reduction than those of simpler energy retrofits..."

-Rocky Mountain Institute

 "...is a retrofit project that achieves at least 30% energy savings in a building

-New Buildings Institute

A "Smart" Energy Retrofit...

- Saves more carbon than it spends by the year 2030
- Accounts for embodied, operational, and end-of-life carbon emissions
- Strategically improves building energy performance through minimal addition of new material
- Positions the building within the bigger picture of the greening grid and utility upgrades to maximize carbon reductions over time

CASE STUDY

Energy Retrofit Project Team

- Architect: Goody Clancy
 - Building analytics and envelope: Thornton Tomasetti
- MEP engineering: Van Zelm Engineers

Study Methodology

- Identify project goals
- Establish evaluation criteria
- Create list of potential scope items
- Analyze scope items relative to established criteria
- Propose phasing/bundling of scope
- Conclusions

Study Objectives

- Establish method for designing a "smart" energy retrofit project
- Understand which interventions have the best financial and carbon ROI
- Draw conclusions about energy retrofit approaches that are broadly applicable
- Create a project that supports the campus' carbon neutrality goals within constraints of budget, schedule, and deferred maintenance

PARAMETERS OF THE STUDY

Scope Evaluation Criteria

Operational Energy Impact

Operational energy use reductions
– cost and carbon metrics

Embodied Carbon Impact

Embodied carbon of new materials for envelope interventions

Thermal Comfort

Benefits to occupant thermal comfort

User Control

Level of control individual occupants have within their space

Applicability to Other Campus Buildings

Relevance of energy conservation measure to retrofit of other campus buildings

Accessibility

Inclusivity of access to spaces for all community members

Maintenance Implications

Impact on routine maintenance and material replacement cycle

Scope Item Categories

- 125 Scope Items
- 50 energy conservation measures (ECMs)

Envelope End-of-Life Replacements

- Window replacement
- Reroofing

Zone-Level HVAC Upgrades

- Retrofit existing system
- Radiant ceilings
- VRF
- Ventilation air

Envelope Upgrades

- Wall insulation
- Overcladding

Primary Energy Source

- Existing campus hot water
- Geothermal
 High-efficiency
 gas boilers

Energy Conservation Measure Categories

Envelope

- Window replacement
- **Roof Insulation**
- Wall Insulation

HVAC

- Retrofit/replace in kind existing system
- Radiant ceilings
- VRF
- Ventilation air

Primary Utility Existing campus hot

- water
- boilers

Geothermal system High-efficiency gas

SCOPE EVALUATION

Scope Evaluation Process

Forensics

> Analysis

Bundling

Investigate existing conditions:

- Exterior probes
- Exterior & building systems survey
- Blower door testing
- Laser scan

Evaluate impact of individual scope items:

- Thermal modeling
- Energy modeling
- Comfort modeling
- Life cycle assessment

Determine impact of bundled scope items:

- Operational energy
- Occupant comfort
- Embodied carbon

Phasing

Establish scope priorities for current and future work:

 Build project scope that enables future upgrades for additional savings

EXISTING CONDITIONS

Analysis Round 1: Identify Opportunities for Greatest Impact

Thermal modeling (Tool: THERM)

- Model existing thermal bridges
- Test various insulation configurations
- Establish best case improvements in R-value

Full building energy modeling (Tool: Open Studio)

- Calibrate existing conditions model
- Analyze 50 energy conservation measures representing full range of options
- Understand relative impacts of each intervention
- Quickly establish highest possible energy and carbon reductions

ANALYSIS - ROUND 1

THERM Analysis of Bay Window Retrofit Options

ECM A

Add 1¹/₂" vertical insulation at interior

R-value: 2.1

ECM C

Overclad $1\frac{1}{2}$ at exterior concrete

R-value: 2.5

ECM B

Wrap 1¹/₂" insulation at interior

R-value: 3.6

ECM D

Overclad $1\frac{1}{2}$ at concrete and spandrel

R-value: 7.5

ANALYSIS – ROUND 1

Top Ten Operational Carbon Savings Measures

GOODYCLANCY | Defining the "Smart" Energy Retrofit Through a Feasibility Study of Two 1960s Residence Halls 18

Zone-Level HVAC Upgrades

Envelope Upgrades

Primary Energy Source Potential

Analysis Round 2: Understand Interrelationships of ECMs and Environmental Impacts

Parametric energy modeling (Tool: Open Studio)

- Analyze 240 combinations of ECMs
- Assess interrelationships
- Optimize for energy use, carbon emissions, and cost reduction

Life cycle assessment (Tool: Tally)

- Quantify embodied carbon emissions of envelope options
- Understand carbon storing potential of biogenic materials

Summer comfort

- Evaluated with current data (TMY3) and predicted 2080 meteorological data
- Annual hours above 78F for each condition to determine cooling need

Carbon Savings of Combined Measures

	Hot water heat exchangers	Gas fired boilers	Geo-exchange system
New VFD HW Pumps	171		
Runtal radiators	185	227	331
Radiant heating panels	179	224	331
Radiant heating and cooling panels	87	137	331

Combined Operational Carbon	
Savings (mtCO2e/yr)	

ANALYSIS – ROUND 2

Balancing Operational and Embodied Carbon

22 | **GOODYCLANCY** | Defining the "Smart" Energy Retrofit Through a Feasibility Study of Two 1960s Residence Halls

Envelope End-of-Life Replacements

Envelope Upgrades

ANALYSIS – ROUND 2

Carbon Payback Period

CONCLUSIONS

Lessons Learned about the "Smart" Energy Retrofit

- Maintaining the building envelope plays a significant role in reducing energy consumption
- Superinsulating existing buildings does not always yield dramatic energy savings
- **Carbon reduction potential is limited at the building** scale. Building retrofits must be designed for compatibility with greening energy sources to maximize carbon savings.

How to Make All Retrofits Smarter

- Establish maximum carbon return on investment as a project criterion
- Measure total life cycle carbon
- **Optimize carbon payback for envelope end-of-life** replacement/refurbishment measures
- **Evaluate retrofit interventions at envelope weak points** for effective reductions in energy use
- Look for opportunities to store carbon through new materials

THANK YOU!

Lori Ferriss: lori.ferriss@goodyclancy.com Elaine Hoffman: elaine.hoffman@goodyclancy.com