Blog Post

Biomass vs. Biomass – Round 1 – Scrutinizing Biomass Electricity Generation

Biomass supporters cite it as a "green" fuel like wind and solar. Using it to generate electricity, though, leaves a lot to be desired in terms of public health and efficiency.

"On a scale from 1 to 10, how nice are you?"

My nine-year-old neighbor put that question to me recently. He had been asked the question as part of an anti-bullying curriculum at his school, and he was trying it out on other people. I wasn't sure how to answer it, and neither was he--"niceness" just doesn't fit on a 10-point scale, in my mind. It did get us to talk a bit about what is nice and what isn't, though, and he noted that there was less "meanness" at his school following use of the curriculum.

How green is biomass energy?

"On a scale from 1 to 10, how green is energy from biomass?"

What would you say?

Burning biomass for electrical production is, on its surface, attractive. Take the McNeil Generating Station in Burlington, Vermont, as an example. In the 1970s, the Burlington Electric Department (BED) was looking for additional power sources to meet rising demand for electricity. This was the era of the First Energy Crisis, and Three Mile Island. Oil and nuclear weren't looking so good.


BuildingGreen relies on our premium members, not on advertisers. Help make our work possible.

See membership options »

According to the Burlington Electric Department (BED) website, "BED conducted studies to find a fuel source that would be locally available, reliable, cost-effective, non-polluting and publicly acceptable. Wood scored high on all counts. Using wood fuel as a generation source would put money back into the Vermont economy, improve the condition of our forests and provide jobs for Vermonters."

Fueled by low-quality trees and harvest residues

In 1978, Burlington voters approved a bond authorizing construction, with 71 percent of voters in support. The plant, which began operating in 1984, has a net electrical output of 50 megawatts. (For comparison, Vermont's nuclear plant, Vermont Yankee, puts out 650 megawatts.) That is nearly enough electricity for Burlington--Vermont's largest city. In 1989, McNeil was altered to also burn natural gas. According to BED, that allows it to be online more often, thus operating more economically.

Burning wood produces emissions, but BED says that they're well controlled. Stack devices keep particulate emissions to one-tenth of State limits and one one-hundredth of federal limits. Like other power plants, McNeil uses water for cooling. It draws that water from four wells located near the plant, and releases clean, used water into the Winooski River. Wood ash produced at McNeil is used as a soil amendment.

McNeil's wood comes from various regional sources. Seventy percent is "whole-tree chips" that according to BED, come from "low-quality trees and harvest residues." Those include poorly formed trees that don't have potential to be manufactured into useful products, and tree tops. Those chips are supplemented by sawdust, chips, and bark from local sawmills. McNeil even has a drop-off location for local residents for their wood and yard waste--everything from unpainted lumber waste to trees and limbs.

A different take on the same story

That is the story told by McNeil's owners, and it's a pretty good one. For a different reading of this story, I talked with Josh Schlossberg, the communications coordinator for something called the Biomass Accountability Project (see the Partnership for Policy Integrity website for more info). I had heard a few months ago that Josh was very critical of biomass power and in part because he's an old acquaintance who I know is a committed environmentalist, I wanted to learn more.

"Biomass power should be in a different category than zero-waste, zero-emissions sources like solar and wind," says Schlossberg, even though he acknowledges that each of those has environmental impacts.

Topping Schlossberg's list of concerns is public health. McNeil is 400 feet from a residential area of Burlington's Old North End. Schlossberg quotes the Environmental Protection Agency's National Emissions Inventory Database as revealing 75 different air pollutants coming from McNeil's smokestack.

Where there's fire, there's smoke

Those emissions include everything from dioxin, carbon monoxide, sulfur dioxide, nitrogen oxides, volatile organic compounds, formaldehyde, chlorine, heavy metals, and particulate matter (PM) 2.5. "PM2.5" is particulate matter 2.5 micrometers in diameter--so small it can't be seen, and so tiny that it can lodge deep in the lungs, bloodstream, and internal organs. American Cancer Society studies demonstrate there is no safe level of exposure, says Schlossberg.

BED accurately characterizes McNeil emissions as being below regulatory thresholds, but the plant is still burning wood. Where there's smoke there's fire, and vice versa--and BED can't possibly keep all the smoke from entering the air and ultimately the lungs of residents.

Schlossberg is also concerned about the wood supply demanded by McNeil and other similar biomass facilities, either built or proposed. When McNeil is running at full load, it consumes 76 tons of whole-tree chips per hour, according to BED, or the equivalent of 30 cords of firewood. It uses 400,000 tons of chips per year, the energy equivalent of 800,000 barrels of oil.

Wood use competes with other markets

Although BED says that McNeil uses low-quality trees as fuel, Schlossberg says that its use is competing with other possible outcomes for those trees--pulpwood (for paper), firewood, and leaving them in the forest. While the market determines where the trees end up, Schlossberg worries that the demand for electricity puts a strain on the forest and increases prices for other commodities, especially home heating wood.

How much woody biomass is available for burning? According to BED's website, Northern Vermont could conservatively produce about one million tons of wood chips per year--enough to power two McNeil plants. While that indicates that there is some excess capacity in the woody biomass market, it doesn't sound to me like an unlimited capacity. There are numerous biomass plants proposed for New England, and Northern Vermont could only handle one more.

Schlossberg quotes Department of Energy (DOE) statistics saying that biomass provides 0.9 percent of electrical needs nationwide. That's a respectable showing, but it reveals that we would need a lot more biomass to make a dent in our oil, gas, and coal consumption (DOE, in its latest forecast, sees biomass electricity tripling by 2035). To this point, he dug up an interesting statistic from Harper's magazine: if we cut down every tree in the U.S., it would meet our energy needs for one year. We don't know what Harper's assumed in getting that number, but it's impressive all the same, in the devastation that would be caused for just one year of energy.

Maximizing efficient use of a (very) limited resource

A discussion of biomass wouldn't be complete without carbon. Biomass proponents say that it is carbon-neutral: for every tree burned at McNeil and similar plants, another tree replaces it in the forest. While that may be true, climate change is an urgent issue today, and it will take decades for that new tree to grow and absorb carbon. Schlossberg, also notes that "Burning stuff is what has gotten us into the climate change problem to begin with."

Given that our woody biomass is a limited resource, thermal electric stations like McNeil have a serious limitation--efficiency. Any power plant that extracts only electricity from a fuel source will typically be about 33 percent efficient. BED doesn't publish efficiency figures, but according to Schlossberg, McNeil's efficiency when burning biomass may be as low as 20 percent. The rest of the heat energy in the fuel is wasted as heat. Removing all that waste heat is the job of cooling towers using water.

Heating with firewood in a modern, efficient wood stove gives an efficiency of about 80 percent. That doesn't help us with our lightbulbs and dishwashers, though. However, there has recently been a push for new cogeneration plants from biomass--combined-heat-and-power (CHP) plants that generate electricity and then use the waste heat to heat and cool homes and businesses in the area. These plants can run at an overall efficiency of 70 percent or better. Both wood heat and biomass-fueled CHP produce air pollution, so public health concerns remain, however.

Trying to head off a construction boom

Schlossberg says that he and organizations he works with don't have a position on wood heat and biomass CHP. So far, they're focusing on biomass power plants, and trying to head off what threatens in parts of the country to become a construction boom for them. At the very least, Schlossberg says, he'd like those plants to try to stand on their own without taxpayer funding.

Do you have an answer--how green is biomass energy, on a scale from 1 to 10? I know it's tempting to throw up one's hands and spout coprolalia, but stick with me for future columns as I explore other uses of biomass to meet our energy needs.

Read last week's blog post: Does Saving Historic Buildings Really Save Energy?

Photos: Tour photos from McNeil.

Published May 3, 2011

(2011, May 3). Biomass vs. Biomass – Round 1 – Scrutinizing Biomass Electricity Generation. Retrieved from–-round-1-–-scrutinizing-biomass-electricity-generation

Add new comment

To post a comment, you need to register for a BuildingGreen Basic membership (free) or login to your existing profile.


February 18, 2012 - 4:49 pm

Although there are some serious drawbacks, where I live in Alabama...forestry practices are generally net positive in terms of land/forest health.

If you cutover a tract, site prep and could have a potentially healthier forest than the forest that was cutover to begin. When managed properly through herbicide site-prep, thinning operations and controlled burns, etc., wildlife and native plant species can have a fighting chance against non-native invasive species that cost this county BILLIONS of dollars annually.

May 17, 2011 - 11:46 am

I’d also like to address the “methane myth,” that forests should somehow be “cleaned up” to keep decomposing wood from polluting the atmosphere. Environmental Working Group’s 2010 report, Carbon Loophole Threatens U.S. Forests, explains how “bacterial methane production during decomposition occurs under low-oxygen conditions that occur mostly in wetland soils, and not in the well-aerated conditions of uplands where most logging residues are found”. Dead wood is one of the most important components of a healthy forest, providing future soil nutrients and essential wildlife habitat. Burning up these forest “residues” for electricity is equivalent to robbing the soil’s fertility.

May 6, 2011 - 6:10 am

I would give biomass electricity generation a rating of 5. It certainly could be improved by locating it near sources of biomass to reduce Diesel based shipping costs. And the waste heat could be used to warm greenhouses for winter growth of vegetables.
I agree that we don't need a building boom of these types of generators - one or two may be sufficient. Most important is to reduce and stabilize electricity demand and as Robert Riversong says one way to do that is to stabilize our human population worldwide and I would say statewide also.

May 3, 2011 - 2:54 pm

Thank you for the blog. I have heard that wood left to rot produces some methane which is a potent green house gas and burning of wood domestically avoids this. Is this in fact true? Thank you

May 3, 2011 - 9:04 am

A paper published by Stanford University News in late 2008 is the first study of global energy generation alternatives which quantified the required footprints, health impacts and global warming contributions, as well as associated resource issues. It was formally published in 2009 in the journal Energy and Environmental Science. The full study is available at:

While the authors don't specifically address wood-fired power, they rate corn and cellulosic ethanol as little better than nuclear or coal. "Ethanol-based biofuels will actually cause more harm to human health, wildlife, water supply and land use than current fossil fuels."

Their rating of the various options for electrical power generation was this:

1. wind power
2. concentrated solar power (CSP)
3. geothermal power
4. tidal power
5. solar photovoltaics (PV)
6. wave power
7. hydroelectric power
8. tie between nuclear power and coal with carbon capture and sequestration (CCS).

But, ultimately, no power source is going to save the earth from catastrophe. The only real solution is to use less - much, much less. Which also means to limit or stop human population growth. If we don't do that ourselves, then Mother Nature will take the initiative.

May 3, 2011 - 8:18 am

To learn more about the impacts of biomass power incineration on public health, climate, forests, watersheds, and genuinely clean, renewable energy, go to: